An overview of novel and conventional methods to detect microparticles and exosomes Edwin van der Pol September 23rd, 2010 Academic Medical Center (AMC) University of Amsterdam (UvA) Laboratory Experimental Clinical Chemistry (Rienk Nieuwland) Biomedical Engineering & Physics (Ton van Leeuwen) #### Introduction - body fluids contain cell-derived vesicles - clinically relevant information - problem: vesicle detection ## Optical detection: light scattering #### **Outline** - exploration of detection methods - Flow cytometry (FACS) - Dynamic Light Scattering (DLS) - Nanoparticle Tracking Analysis (NTA) - Atomic Force Microscopy (AFM) - Impedance-based flow cytometry - future developments - conclusions # Approach: estimate capabilities of methods considering well-known limitations # Approach: estimate capabilities of methods considering well-known limitations ## Flow cytometry (FACS) - developed for cell detection (>1 μm) - smallest detectable polystyrene bead (n=1.6): ~300 nm^{1,2} - detection efficiency of vesicles (n≈1.4) by FACS: < 2% ## Flow cytometry (FACS) - developed for cell detection (>1 μm) - smallest detectable polystyrene bead (n=1.6): ~300 nm^{1,2} - detection efficiency of vesicles (n≈1.4) by FACS: < 2% #### **Dynamic Light Scattering (DLS)** - Brownian motion depends on vesicle diameter - determines mean size of vesicles in fluids - difficulty with polydisperse samples - result strongly depends on mathematical algorithm #### **DLS** applied to vesicles N5 Submicron Particle Size Analyser (Beckman Coulter)³ Zetasizer Nano S (Malvern Instruments Ltd)³ - results are system dependent - no determination of absolute size and concentration ### Nanoparticle Tracking Analysis (NTA) - determines size and concentration of vesicles in fluids⁴ - present detection limit:~50 nm for vesicles - can potentially be extended with fluorescence detection ## Non optical methods: Atomic Force Microscopy (AFM) - provides information on size, concentration, biochemical composition, and cellular origin⁵ - binding efficiency and influence of binding on vesicle deformation unknown #### Impedance-based flow cytometry - determines size and concentration of vesicles - present detection limit:~300 nm⁶ - can be combined with flow cytometry #### Impedance-based flow cytometry - determines size and concentration of vesicles - present detection limit:~300 nm⁶ - can be combined with flow cytometry #### **Overview** | Method | Size | Concentration | Biochemical information | Measurement
time | |---|----------|---------------|-------------------------|---------------------| | Transmission Electron
Microscopy (TEM) | ✓ | × | | hours | | Flow cytometry (FACS) | x | | \checkmark | seconds | | Dynamic Light Scattering (DLS) | <u></u> | × | × | minutes | | Nanoparticle Tracking
Analysis (NTA) | © | | to be
investigated | minutes | | Atomic Force
Microscopy (AFM) | ✓ | | ✓ | hours | | Impedance-based flow cytometry | × | | × | seconds | #### **Future developments** - Raman microspectroscopy⁷: - determine size, concentration, and chemical composition of vesicles in fluids label-free #### **Conclusions** - vesicle detection remains challenging - applications of novel and conventional methods requires further investigation