An overview of novel and conventional methods to detect microparticles and exosomes

Edwin van der Pol

September 23rd, 2010

Academic Medical Center (AMC)
University of Amsterdam (UvA)

Laboratory Experimental Clinical Chemistry (Rienk Nieuwland)
Biomedical Engineering & Physics (Ton van Leeuwen)

Introduction

- body fluids contain cell-derived vesicles
- clinically relevant information
- problem: vesicle detection

Optical detection: light scattering

Outline

- exploration of detection methods
 - Flow cytometry (FACS)
 - Dynamic Light Scattering (DLS)
 - Nanoparticle Tracking Analysis (NTA)
 - Atomic Force Microscopy (AFM)
 - Impedance-based flow cytometry
- future developments
- conclusions

Approach: estimate capabilities of methods considering well-known limitations

Approach: estimate capabilities of methods considering well-known limitations

Flow cytometry (FACS)

- developed for cell detection (>1 μm)
- smallest detectable polystyrene bead (n=1.6): ~300 nm^{1,2}
- detection efficiency of vesicles (n≈1.4) by FACS: < 2%

Flow cytometry (FACS)

- developed for cell detection (>1 μm)
- smallest detectable polystyrene bead (n=1.6): ~300 nm^{1,2}
- detection efficiency of vesicles (n≈1.4) by FACS: < 2%

Dynamic Light Scattering (DLS)

- Brownian motion depends on vesicle diameter
- determines mean size of vesicles in fluids
- difficulty with polydisperse samples
- result strongly depends on mathematical algorithm

DLS applied to vesicles

N5 Submicron Particle Size Analyser (Beckman Coulter)³

Zetasizer Nano S (Malvern Instruments Ltd)³

- results are system dependent
- no determination of absolute size and concentration

Nanoparticle Tracking Analysis (NTA)

- determines size and concentration of vesicles in fluids⁴
- present detection limit:~50 nm for vesicles
- can potentially be extended with fluorescence detection

Non optical methods: Atomic Force Microscopy (AFM)

- provides information on size, concentration, biochemical composition, and cellular origin⁵
- binding efficiency and influence of binding on vesicle deformation unknown

Impedance-based flow cytometry

- determines size and concentration of vesicles
- present detection limit:~300 nm⁶
- can be combined with flow cytometry

Impedance-based flow cytometry

- determines size and concentration of vesicles
- present detection limit:~300 nm⁶
- can be combined with flow cytometry

Overview

Method	Size	Concentration	Biochemical information	Measurement time
Transmission Electron Microscopy (TEM)	✓	×		hours
Flow cytometry (FACS)	x		\checkmark	seconds
Dynamic Light Scattering (DLS)	<u></u>	×	×	minutes
Nanoparticle Tracking Analysis (NTA)	©		to be investigated	minutes
Atomic Force Microscopy (AFM)	✓		✓	hours
Impedance-based flow cytometry	×		×	seconds

Future developments

- Raman microspectroscopy⁷:
 - determine size, concentration, and chemical composition of vesicles in fluids label-free

Conclusions

- vesicle detection remains challenging
- applications of novel and conventional methods requires further investigation