Novel methods to detect microparticles *and improved analysis with flow cytometry*

Edwin van der Pol^{1,2}

Guus Sturk¹, Ton van Leeuwen^{2,3}, Rienk Nieuwland¹

July 23rd, 2011

¹Laboratory Experimental Clinical Chemistry; ²Biomedical engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands ³Biomedical Photonic Imaging, University of Twente, Enschede, The Netherlands

ISTH2O]] Disclosures for Edwin van der Pol

In compliance with AMA requirements, ISTH makes the following disclosures to the session audience:

Research Support/P.I.	No relevant conflicts of interest to declare
Employee	No relevant conflicts of interest to declare
Consultant	No relevant conflicts of interest to declare
Major Stockholder	No relevant conflicts of interest to declare
Speakers Bureau	No relevant conflicts of interest to declare
Honoraria	No relevant conflicts of interest to declare
Scientific Advisory Board	No relevant conflicts of interest to declare

Presentation includes discussion of the following off-label use of a drug or medical device: $\langle N/A \rangle$

Introduction

- body fluids contain cell-derived vesicles
- clinically relevant information
- problem: vesicle detection

Objective

 explore the ability of novel and conventional methods to detect the *size* and *concentration* of vesicles in suspension

Methods

- standard population¹ of
 - vesicles prepared from human cell-free urine (n=5)
 - mixture of polystyrene beads
- analyzed by
 - Transmission Electron Microscopy
 - Nanoparticle Tracking Analysis
 - Resistive Pulse Sensing
 - Flow cytometry

Transmission Electron Microscopy

Nanoparticle Tracking Analysis

- determines *size* and *concentration* of vesicles in suspension
- recently successfully extended with *fluorescence detection*²

2. Dragovic et al. *Nanomedicine* 2011

Nanoparticle Tracking Analysis

Nanosight NS500

Resistive Pulse Sensing

determines *size* and *concentration* of vesicles in suspension

Resistive Pulse Sensing

iZon qNano

Flow cytometry and the refractive index

Flow cytometer calibration

 absolute scattering power (mW) is calculated by Mie theory to relate detected scattering power (a.u.) to the diameter of beads

Flow cytometry calibration

Flow cytometry detection limit

Flow cytometry detection limit

Flow cytometry detects *multiple* vesicles as single count

vesicles from human urine filtered with 220 nm filter

89 nm silica beads at concentration 1E10 ml⁻¹

Conclusion

- Nanoparticle Tracking Analysis and Resistive Pulse Sensing are promising methods to determine size and concentration of *single* vesicles in suspension (P-MO-405)
- detection of vesicles by flow cytometry is attributed to scattering from *multiple* vesicles (P-MO-404)