Optical detection and characterization of extracellular vesicles

Edwin van der Pol^{1,2}

Cees Otto³, Rienk Nieuwland², Guus Sturk², and Ton van Leeuwen¹

December 7th, 2012

¹Biomedical Engineering and Physics; ²Laboratory Experimental Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands ³Medical Cell BioPhysics, ⁴Biomedical Photonic Imaging, University of Twente, Enschede, The Netherlands

Introduction

- cells release vesicles:
 spherical particles with phospholipid bilayer
- clinically relevant
- detection and isolation cumbersome

Objective (part 1)

- determine
 - size
 - concentration
 - composition (proteins, lipids, RNA, DNA)
 of single vesicles in suspension at high throughput

Conventional methods

- flow cytometry
- transmission electron microscopy

Results - flow cytometry

Results - flow cytometry

Results - multiple vesicles as single count

vesicles from human urine filtered with 220-nm filter

89-nm silica beads at concentration 10¹⁰ beads ml⁻¹

Conclusion (part 1)

- vesicle detection by flow cytometry
 - scattering power related to bead diameter
 - detection limit is 300 700 nm for single vesicles
 - multiple vesicles are simultaneously illuminated

Objective (part 2)

- determine
 - size
 - concentration
 - composition (proteins, lipids, RNA, DNA)

of single vesicles in suspension at high throughput

Method: resistive pulse sensing

- diffusion
- electrophoresis
- osmosis
- pressure

Results: resistive pulse sensing

- size and concentration obtained
- detection limit: ~80 nm

Objective

- determine
 - size
 √
 - concentration ✓
 - composition (proteins, lipids, RNA, DNA)
 of single vesicles in suspension at high throughput

Method: Raman microspectroscopy

Results: Raman spectrum of PBS

Results: Raman spectrum of tumor cell vesicle

Results: Raman spectrum of tumor cell vesicle

Results: Label-free identification of vesicles

Conclusion

- determine
 - size
 √
 - concentration ✓
 - chemical composition ✓

of single vesicles in suspension at high throughput

Outlook

Raman microspectroscopy

- simultaneously determine
 - size
 - concentration
 - chemical composition

of single vesicles in suspension at medium throughput

Acknowledgements

- Anita Böing
- Anita Grootemaat
- Aufried Lenferink
- Cees Otto
- Chi Hau
- Guus Sturk
- Henk van Veen
- Rienk Nieuwland
- Ton van Leeuwen

