Development of reference materials to standardize microvesicle detection

Edwin van der Pol^{1,2} on behalf of Rienk Nieuwland¹

June 29th, 2012

¹Laboratory Experimental Clinical Chemistry; ²Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands

Disclosures for Edwin van der Pol

In compliance with COI policy, ISTH requires the following disclosures to the session audience:

Research Support/P.I.	No relevant conflicts of interest to declare		
Employee	No relevant conflicts of interest to declare		
Consultant	No relevant conflicts of interest to declare		
Major Stockholder	No relevant conflicts of interest to declare		
Speakers Bureau	No relevant conflicts of interest to declare		
Honoraria	No relevant conflicts of interest to declare		
Scientific Advisory Board	No relevant conflicts of interest to declare		

Presentation includes discussion of the following off-label use of a drug or medical device: $\langle N/A \rangle$

Introduction DOI: 10.1111/j.1538-7836.2010.04047.x DOI: 10.1111/j.1538-7836.2011.04283.x Letters to the Editor 1679 DOI: 10.1111/j.1538-7836.2010.04074.x DOI: 10.1111/J.1538-7836.2009.03654.x Journal of Thrombosis and Haemostasis, 7: 190–197 Nanotechnology, Biology, and Medicine ORIGINAL ARTICLE in the analysis of blood Standardization of platelet-derived microparticle counting using Calibrated beads and a Cytomics FC500 routine flow cytometer: DOI: 10.1111/j.1538-7836.2008.03200.x a first step towards multicenter studies? S. ROBERT, * P. PONCELET, † R. LACROIX, * ‡ L. ARNAUD, ‡ L. GIRAUDO, ‡ A. HAUCHARD, †

Metrology for health call 2011

- support reliable and efficient exploitation of diagnostic and therapeutic techniques and development of new technologies to improve healthcare
- metrology is the science of measurement

Dutch Metrology Institute

Metrological characterization of microvesicles from body fluids as non-invasive diagnostic biomarkers

Letters of Support

HARVARD MEDICAL SCHOOL

24 Hours a Day 7 Days a Week

Oxford Radcliffe Hospitals NHS Trust

University Medical Center Utrecht

Aim

- develop reliable, comparable and quantitative analysis of microvesicles in biological fluids
 - development of isolation procedures
 - dimensional characterization
 - characterization of the chemical composition, morphology and concentration
 - selection, characterization and distribution of reference materials

 development and application of procedures for microvesicle isolation

- dimensional characterization of microvesicles and reference materials
 - free in suspension (nanoparticle tracking analysis, resistive pulse sensing, small angle X-ray scattering)
 - adhered to a surface
 - dried conditions (atomic force microscopy, (transmission) scanning electron microscopy)

wet conditions (atomic force microscopy)

BESSYI

Small angle X-ray scattering

Calculations: Bouwstra et al. Chem. Phys. Lip. 1993

- chemical analysis, morphology, and concentration of microvesicles
 - chemical analysis (anomalous small angle x-ray scattering, X-ray fluorescence)
 - cellular origin and type (atomic force microscopy with functionalized tips)
 - morphology
 - dried conditions (atomic force microscopy, transmission electron microscopy)
 - wet conditions (atomic force microscopy)
 - concentration (nanoparticle tracking analysis, resistive pulse sensing)

 development and distribution of traceable reference materials

Reference material	Size	Concentration	Density	Refractive index
	(nm)	(ml⁻¹)	(g/cm³)	@530 nm
Synthetic particles				
 polystyrene beads 	30 – 1,000	$1 \times 10^{10} - 1 \times 10^{14}$	1.05	1.599
 silica beads 	30 – 1,000	$1 \times 10^{10} - 1 \times 10^{14}$	2.00	1.461
biological particles				
 Intralipid 	25 – 700	~1x10 ¹⁴	0.93	1.465
 purified vesicles 	30 – 1,000	variable	1.13-1.19	not known

- Inter metrological laboratory comparison
- inter clinical laboratory comparison

Inter clinical laboratory comparison

goal

 validate developed protocols and detection methods in clinical laboratories using traceable reference materials

distribution

September and December 2014

data

collection and analysis in January and February 2015

- results
 - report and peer-reviewed article

Participation

To participate in this SSC survey, please send an e-mail to

r.nieuwland@amc.uva.nl

before October 1st 2012. Please include your

- name and affiliations
- available detection method(s)