Single versus coincidence detection of cell-derived vesicles by flow cytometry

Edwin van der Pol^{1,2}

Martin van Gemert¹, Auguste Sturk², Rienk Nieuwland², and Ton van Leeuwen¹

February 3rd, 2013

¹Biomedical Engineering and Physics; ²Laboratory Experimental Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands

Introduction to cell-derived vesicles

cells release vesicles:

spherical particles with phospholipid bilayer

- specialized functions
- clinically relevant

Introduction to cell-derived vesicles

- vesicles are studied mostly by flow cytometry
- mechanism causing detection incompletely understood

Introduction to flow cytometry

smallest detectable polystyrene bead is 200 nm n = 1.61

image adapted from www.semrock.com

Problem

- diameter of vesicles is <300 nm, $n = \sim 1.4$
- against expectations, vesicles are detected by flow cytometry

Goals

- optimize detection settings
- measure light scattering power of beads
- describe measurements by Mie theory
- determine size of smallest detectable *single* vesicle
- investigate role of *multiple* particles in detection volume by titration

Methods – optimize settings flow cytometer

Goals

- optimize detection settings
- measure light scattering power of beads
- describe measurements by Mie theory
- determine size of smallest detectable *single* vesicle
- investigate role of *multiple* particles in detection volume by titration

Results – scattering power of polystyrene beads

Results – scattering power of silica beads

Goals

- optimize detection settings
- measure light scattering power of beads
- describe measurements by Mie theory
- determine size of smallest detectable *single* vesicle
- investigate role of *multiple* particles in detection volume by titration

Results – scattering power vs. diameter

* van Manen et al., Biophys J (2008)

Results – scattering power vs. diameter

* van Manen et al., Biophys J (2008)

Goals

- optimize detection settings
- measure light scattering power of beads
- describe measurements by Mie theory
- determine size of smallest detectable *single* vesicle
- investigate role of *multiple* particles in detection volume by titration

Results – scattering power vs. diameter

* van Manen et al., Biophys J (2008)

Results – *multiple* **vesicles as single count**

89-nm silica beads at concentration 10¹⁰ beads ml⁻¹

urine filtered with 220-nm filter concentration $\geq 10^{10}$ vesicles ml⁻¹

Detection range
 610 nm beads
 610 nm + 89 nm beads (1/100)
 610 nm + 89 nm beads (1/10,000)

Detection range
610 nm beads
610 nm + 89 nm beads (1/100)
610 nm + 89 nm beads (1/10,000)
610 nm + 89 nm beads (1/100,000)
89 nm beads

Results – counts from urinary vesicles

Results – counts from urinary vesicles

Conclusion

vesicle detection by flow cytometry

- scattering power related to diameter and refractive index for *single* beads and vesicles
- single event signal attributed to scattering from *multiple* vesicles

van der Pol et al., J Thromb Haemost (2012)

Outlook vesicle detection

increase sensitivity of flow "cytometry"

- reduce detection volume
- increase irradiance
- maximize collection angle
- shorter wavelength
- employ other techniques
 - Confocal Raman microspectroscopy*

* Proc SPIE 8591-11, Wednesday 1:50 pm room 309

Acknowledgements

- Anita Böing
- Anita Grootemaat
- Chi Hau
- Guus Sturk
- Henk van Veen
- Marianne Schaap
- Martin van Gemert
- Rienk Nieuwland
- Ton van Leeuwen

