Detection of extracellular vesicles: size does matter

Edwin van der Pol^{1,2}

May 28th, 2015

¹Biomedical Engineering and Physics; ²Laboratory Experimental Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands;

Introduction

 goal: determine the concentration of a vesicle subpopulation

Outline

- challenges
 - determine vesicle concentration and size
 - detect vesicles by flow cytometry
- solutions
 - > vesicle refractive index
 - > standardization of flow cytometry measurements
- outlook
 - future role of metrology

Vesicle concentration determination factsheet

- reported concentration in plasma:
 10⁴ 10¹² vesicles mL⁻¹
- diameter <100 nm for >80% of vesicles
- vesicles differ
 - 25-fold in diameter
 - 20,000-fold in volume
 - 300,000-fold in concentration
 - · 10,000,000-fold in scattered light
- vesicles originate from complex fluids
- instruments differ >1 order of magnitude in sensitivity

Concentration and size of urinary vesicles

size distribution

total concentration

Concentration and size of urinary vesicles

size distribution fitted

total concentration

- size distribution: power-law function
- smallest detectable size affects concentration

Platelet and erythrocyte vesicle size and concentration by atomic force microscopy*

Erythrocyte vesicles in air

Platelet vesicles in air

size distribution: power-law function!

Outline

- challenges
 - ✓ determine vesicle concentration and size
 - detect vesicles by flow cytometry
- solutions
 - > vesicle refractive index
 - > standardization of flow cytometry measurements
- outlook
 - future role of metrology

Vesicle detection by flow cytometry

fluorescence channels

forward scatter detector (FSC)

Problem: arbitrary units hamper data interpretation and comparison

same population of erythrocyte vesicles

goal: relate scatter to particle diameter

Relate scatter to diameter of particles with Mie theory

Relate scatter to diameter of aprticles with Mie theory

Relate scatter to diameter of particles with Mie theory

optical configuration

- collection angles
- collection efficiency
- obscuration bar
- diaphragm
- mirror

Relate scatter to diameter of particles with Mie theory

Becton Dickinson FACSCalibur Apogee A50-micro Side scatter Forward scatter

Relate scatter to diameter of vesicles

Particles that are too small to be detected generate a signal!

89 nm silica beads at concentration 10¹⁰ beads ml⁻¹

urine filtered with 220 nm filter concentration $\geq 10^{10}$ vesicles ml⁻¹

Conclusion vesicle detection by flow cytometry

- single event signal attributed to scattering from multiple vesicles
- scattering power related to diameter and refractive index for single beads and vesicles

Outline

- ✓ goal
- - ✓ determine vesicle concentration and size
- solutions
 - > vesicle refractive index
 - > standardization of flow cytometry measurements
- outlook
 - future role of metrology

Nanoparticle tracking analysis for refractive index determination

- obtain **particle diameter** *d* by tracking the Brownian motion of single particles (Stokes-Einstein equation)
- measure scattering power P
- derive particle **refractive index** *n(P,d)* from Mie theory

Refractive index determination - approach

- calibration
 - calculate light scattering by Mie theory
 - measure light scattering of beads
- validation
 - determine refractive index of beads mixture
- application
 - determine refractive index of vesicles

Results - scattering cross section vs. diameter of polystyrene beads by Mie theory

Results - scattering cross section vs. diameter of polystyrene beads

Results - scattering cross section vs. diameter of polystyrene and silica beads

Refractive index determination - approach

- calibration
- validation
 - determine refractive index of beads mixture
- application
 - determine refractive index of vesicles

Results - scattering cross section vs. diameter of a mixture of polystyrene and silica beads

Results - scattering cross section vs. diameter of a mixture of polystyrene and silica beads

Results - refractive index and size distribution of a mixture of polystyrene and silica beads

Refractive index determination - approach

- calibration
- ✓ validation
 - ✓ determine refractive index of beads mixture
- application
 - determine refractive index of vesicles

Results - scattering power versus diameter of urinary vesicles

Results - size and refractive index distribution of urinary vesicles

Conclusions refractive index of vesicles

- nanoparticle tracking analysis can be used to determine the refractive index of nanoparticles
- mean refractive index of urinary vesicles is 1.37

Outline

- √ challenges
 - ✓ determine vesicle concentration and size -
 - ✓ detect vesicles by flow cytometry -
- solutions
 - ✓ vesicle refractive index -
 - > standardization of flow cytometry measurements
- outlook
 - future role of metrology

Problem 1: arbitrary units (solved!)

same population of erythrocyte vesicles

10⁴
(in a scatter (a.u.)

Note that the state of the st

Apogee A50-micro

Becton Dickinson FACSCanto II

Problem 2: instruments differ in sensitivity

size distribution fitted

total concentration

Goal

- reproducible concentration of
 - > erythrocyte vesicles
 - lactadherin-FITC, CD235a-PE labeled
 - platelet vesicles
 - lactadherin-FITC, CD61-PE labeled

using different flow cytometers

Study comprises 30 sites (50 instruments) worldwide

Approach

- determine flow rate
- determine size gates
 - measure well-characterized beads
 - obtain scatter to diameter relation

- measure vesicle samples and controls
- derive vesicle concentrations

Results – sensitivity of 41 systems

Results – erythrocyte EV concentration in gate 1

Results – erythrocyte EV concentration in gate 1

coefficient of variation (CV, without 3 outliers) = 26%

Conclusions flow cytometry standardization

- beads + software developed to set a vesicle size gate for all flow cytometers
- preliminary CV of 26% on the concentration of erythrocyte vesicles of 1200 – 3000 nm
- 34% of the systems neither detect 400 nm fluorescently labeled polystyrene beads nor vesicles

Summary

- ✓ goal
 - ✓ determine concentration of a vesicle subpopulation
- - √ vesicle concentration requires minimum size
 - ✓ detect vesicles by flow cytometry
- solutions
 - ✓ vesicle refractive index < 1.40
 </p>
- outlook
 - future role of metrology

Outlook

- - ✓ determine concentration of a vesicle subpopulation
- challenges concentration reference materials?
 - √ vesicle concentration requires minimum size
- ✓ solutions (low) refractive index reference materials?
 - ✓ vesicle refractive index < 1.40 reference materials?</p>
- outlook
 - future role of metrology

Acknowledgements

- Academic Medical Center
 - Biomedical Engineering & Physics
 - Ton van Leeuwen
 - Frank Coumans
 - Laboratory Experimental Clinical Chemistry
 - Rienk Nieuwland
 - Guus Sturk
- Exometry

- European Association of National Metrology Institutes (EURAMET)
 - The European Metrology Research Programme (EMRP) is jointly funded by the EMRP participating countries within EURAMET and the European Union
- International Society on Thrombosis and Haemostasis

Software: exometry.com

Info: edwinvanderpol.com