Trapping of single extracellular vesicles in the evanescent field of an optical cavity Edwin van der Pol^{1,2} Frank Coumans^{1,2}, J. Wilke³, C. Earhart³, B. DiPaolo³, R. Hart³, B. Cordovez³, Auguste Sturk², Rienk Nieuwland², and Ton van Leeuwen¹ February 9th, 2015 ¹Biomedical Engineering and Physics; ²Laboratory Experimental Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands; ³Optofluidics Inc, Philadelphia, United States of America ### Acknowledgements - Academic Medical Center - Biomedical Engineering and Physics - Laboratory Experimental Clinical Chemistry - University of Twente - Aufried Lenferink - Cees Otto - Optofluidics - Bernardo Cordovez #### Introduction – extracellular vesicles - cells release vesicles (e.g. exosomes): biological nanoparticles with receptors, DNA, RNA - specialized functions - clinically relevant #### Introduction – extracellular vesicles - vesicle detection is cumbersome - > small size (< 500 nm) - ➤ low refractive index (~1.4) - fluorescent antibody labeling involves practical problems ### Motive and goal - Clinical motive - count tumor vesicles in blood for therapy monitoring - Goal - distinguish tumor vesicles from normal vesicles in solution without labeling by Raman microspectroscopy ### Sample – vesicle isolation #### erythrocyte vesicles \triangleright centrifuge (3·20 min, 1560·g) * #### platelet vesicles \triangleright centrifuge (3·20 min, $800 \cdot g$) tumor vesicles from a human pancreatic adenocarcinoma (BxPC-3) cell line \triangleright centrifuge (10 min, $180 \cdot g$) ### Sample – Vesicle size distribution data obtained with nanoparticle tracking analysis ### **Methods – Raman microspectroscopy** ### Results – Total intensity versus time ### **Results - Raman spectrum of PBS** ## Results - Raman spectrum of single tumor (BxPC-3) vesicle ## Results - Raman spectrum of single tumor (BxPC-3) vesicle ## Results - Raman spectrum of single tumor (BxPC-3) vesicle ### Results – Single BxPC-3 vesicle trapping - BxPC-3 vesicles have different Raman spectra - composition of vesicles from one cell type differs ### Results - Single vesicle trapping comparison - Differences obtained! However, - only 12 single vesicles were trapped - low signal-to-noise ratio - vesicle size is unknown ### Estimation of vesicle size by elastic scattering vesicle diameter > 1 μm #### **Conclusion and discussion** - measured Raman spectrum of single vesicles - composition of vesicles from one cell type differs - more measurements on single vesicles required - diameter of trapped vesicles > 1 μm - > trapping of smaller vesicles required ### **Outlook: use NanoTweezer to trap vesicles** ## **Optofluidics NanoTweezer** ### Trapping urinary vesicles with a NanoTweezer ## Size estimation of vesicles trapped by the NanoTweezer **Outlook: Raman spectroscopy of single tumor** vesicles with Nanotweezer Spectrometer Fiber Fiber collimator High pass filter Notch filter Dichroic Iris NA Objective NanoTweezer Laser ISOLATOR Chip (785 nm)