Trapping of single extracellular vesicles in the evanescent field of an optical cavity

Edwin van der Pol^{1,2}

Frank Coumans^{1,2}, J. Wilke³, C. Earhart³, B. DiPaolo³, R. Hart³, B. Cordovez³, Auguste Sturk², Rienk Nieuwland², and Ton van Leeuwen¹

February 9th, 2015

¹Biomedical Engineering and Physics; ²Laboratory Experimental Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands; ³Optofluidics Inc, Philadelphia, United States of America

Acknowledgements

- Academic Medical Center
 - Biomedical Engineering and Physics
 - Laboratory Experimental Clinical Chemistry

- University of Twente
 - Aufried Lenferink
 - Cees Otto

- Optofluidics
 - Bernardo Cordovez

Introduction – extracellular vesicles

- cells release vesicles (e.g. exosomes):
 biological nanoparticles with receptors, DNA, RNA
- specialized functions
- clinically relevant

Introduction – extracellular vesicles

- vesicle detection is cumbersome
 - > small size (< 500 nm)
 - ➤ low refractive index (~1.4)
 - fluorescent antibody labeling involves practical problems

Motive and goal

- Clinical motive
 - count tumor vesicles in blood for therapy monitoring
- Goal
 - distinguish tumor vesicles from normal vesicles in solution without labeling by Raman microspectroscopy

Sample – vesicle isolation

erythrocyte vesicles

 \triangleright centrifuge (3·20 min, 1560·g) *

platelet vesicles

 \triangleright centrifuge (3·20 min, $800 \cdot g$)

tumor vesicles from a human pancreatic adenocarcinoma (BxPC-3) cell line

 \triangleright centrifuge (10 min, $180 \cdot g$)

Sample – Vesicle size distribution

data obtained with nanoparticle tracking analysis

Methods – Raman microspectroscopy

Results – Total intensity versus time

Results - Raman spectrum of PBS

Results - Raman spectrum of single tumor (BxPC-3) vesicle

Results - Raman spectrum of single tumor (BxPC-3) vesicle

Results - Raman spectrum of single tumor (BxPC-3) vesicle

Results – Single BxPC-3 vesicle trapping

- BxPC-3 vesicles have different Raman spectra
- composition of vesicles from one cell type differs

Results - Single vesicle trapping comparison

- Differences obtained! However,
 - only 12 single vesicles were trapped
 - low signal-to-noise ratio
 - vesicle size is unknown

Estimation of vesicle size by elastic scattering

vesicle diameter > 1 μm

Conclusion and discussion

- measured Raman spectrum of single vesicles
 - composition of vesicles from one cell type differs
 - more measurements on single vesicles required
- diameter of trapped vesicles > 1 μm
 - > trapping of smaller vesicles required

Outlook: use NanoTweezer to trap vesicles

Optofluidics NanoTweezer

Trapping urinary vesicles with a NanoTweezer

Size estimation of vesicles trapped by the NanoTweezer

Outlook: Raman spectroscopy of single tumor vesicles with Nanotweezer Spectrometer Fiber Fiber collimator High pass filter Notch filter Dichroic Iris NA Objective NanoTweezer Laser ISOLATOR Chip (785 nm)