Novel techniques for refractive index determination of single nanoparticles in suspension

Edwin van der Pol^{1,2}

Frank A. Coumans^{1,2}, Anita N. Böing², Auguste Sturk², Rienk Nieuwland², and Ton G. van Leeuwen¹

February 8th, 2015

¹Biomedical Engineering and Physics; ²Laboratory Experimental Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands

Acknowledgements

- Academic Medical Center
 - Biomedical Engineering and Physics
 - Laboratory Experimental Clinical Chemistry
- European Association of National Metrology Institutes (EURAMET)
 - ➤ The European Metrology Research Programme (EMRP) is jointly funded by the EMRP participating countries within EURAMET and the European Union

- University of Oxford
 - Chris Gardiner
- University of Birmingham
 - Paul Harrison
- NanoSight Ltd.
 - Patrick Hole
 - Andrew Malloy
 - > Jonathan Smith

Introduction to extracellular vesicles

- cells release vesicles (e.g. exosomes):
 biological nanoparticles with receptors, DNA, RNA
- specialized functions
- clinically relevant

Add extracellular vesicle concentrations to hematology reference tables

Hematology parameter	Concentration (cells mL^{-1})
Platelet count	$1.50 - 4.00 \cdot 10^8$
Erythrocyte count	$4.50 - 5.50 \cdot 10^9$
Reticulocyte count	$2.5 - 10.0 \cdot 10^7$
Leukocyte count	$4.0 - 10.5 \cdot 10^6$
Total cell count	$4.7 - 6.0 \cdot 10^9$

Hematology parameter	Concentration (vesicles mL^{-1})
Platelet vesicle count	$2.3 - 6.2 \cdot 10^9$
Erythrocyte vesicle count	$7.0 - 8.6 \cdot 10^{10}$
Reticulocyte vesicle count	$3.9 - 15.6 \cdot 10^8$
Leukocyte vesicle count	$6.2 - 16.4 \cdot 10^7$
Total vesicle count	$7.3 - 9.4 \cdot 10^{10}$

Determine refractive index to identify vesicles

- vesicles $(1.36 \le n \le 1.45 \text{ for } d > 500 \text{ nm})^*$
- | lipoproteins (n = 1.45-1.60)
- protein aggregates (n = 1.53-1.60)

Refractive index to relate scatter to diameter

- flow cytometry is widely used to detect single vesicles
- refractive index provides scatter to diameter relation

Refractive index of vesicles is unknown

- refractive index of vesicles is unknown
- detection range is unknown

Methods for refractive index determination of single nanoparticles in suspension

Refractive index matching (multiple particles)

Methods for refractive index determination of single nanoparticles in suspension

- Multi-angle light scattering* (single particles)
- Refractive index matching (multiple particles)

Problem

 no method to determine the refractive index of single nanoparticles (< 500 nm) in suspension

Method	Single particles	Size (nm)
Refractive index matching	_	All
Multi-angle light scattering	+	≥ 500
flow cytometry		

Goal

- determine the refractive index of single nanoparticles in suspension
 - > identify vesicles in plasma
 - provide insight in vesicle detection by flow cytometry

Methods - single particle tracking (SPT)

- obtain **particle diameter** *d* by tracking the Brownian motion of single particles (Stokes-Einstein equation)
- measure scattering power P
- derive particle refractive index n(P,d) from Mie theory

Methods - setup

- Commercial instrument
 - ➤ Nanosight NS-500

Methods - data acquisition and processing

Methods - approach

- calibration
 - measure light scattering of beads
 - describe measurements by Mie theory
- validation
 - > determine refractive index of beads mixture
- application
 - determine refractive index of vesicles

Results - scattering cross section vs. diameter of polystyrene beads by Mie theory

Results - scattering cross section vs. diameter of polystyrene beads

Results - scattering cross section vs. diameter of polystyrene and silica beads

Methods - approach

- calibration
- validation
 - > determine refractive index of beads mixture
- application
 - determine refractive index of vesicles

Results - scattering cross section vs. diameter of a mixture of polystyrene and silica beads

Results - scattering cross section vs. diameter of a mixture of polystyrene and silica beads

Results - refractive index and size distribution of a mixture of polystyrene and silica beads

Methods - approach

- calibration
- ✓ validation
 - ✓ determine refractive index of beads mixture
- application
 - > determine refractive index of vesicles

Results - scattering power versus diameter of urinary vesicles

Results - size and refractive index distribution of urinary vesicles

Conclusions

- single particle tracking can be used to determine the refractive index of nanoparticles in suspension
- mean refractive index of urinary vesicles is 1.37

Discussion

- accuracy: measurement error = 2.0 %
- precision: coefficient of variation (CV) = 2.8 %

Discussion

- increase precision by increasing minimum tracklength
 - > consequence: number of tracked particles decreases

Outlook: hybrid backscattering – resistive pulse sensing for refractive index determination

Towards vesicles as biomarkers for disease

backscattering intensity fluorescence + Raman scattering*

Hematology parameter	Concentration (vesicles mL^{-1})
Platelet vesicle count	$2.3 - 6.2 \cdot 10^9$
Erythrocyte vesicle count	$7.0 - 8.6 \cdot 10^{10}$
Reticulocyte vesicle count	$3.9 - 15.6 \cdot 10^8$
Leukocyte vesicle count	$6.2 - 16.4 \cdot 10^7$
Total vesicle count	$7.3 - 9.4 \cdot 10^{10}$