Tunable resistive pulse sensing analysis of extracellular vesicles

Edwin van der Pol^{1,2}

D.E. Every, F.A. Coumans, T.G. van Leeuwen, A. Sturk, R. Nieuwland

May 3th, 2016

Vesicle Observation Center, Academic Medical Center, University of Amsterdam, The Netherlands

Common goal: information from extracellular vesicles (EV)

bulk methods

functional methods

single particle methods

Common goal: information from extracellular vesicles (EV)

Izon, qNano

bulk methods

functional methods

single particle methods

Common goal: EV detection with single particle methods

if 1 / 1,000 EV is rare you need to count 1,000,000 EV (3% error)

instrument requirements

- differentiate EV
- count ≥10⁶ EV
- reproducible

Common goal: reproducible EV detection with single particle methods

a concentration statement includes a size range

Tunable resistive pulse sensing (TRPS) principle

Size determination

Size determination

$$\frac{\Delta I}{I} = \frac{d^3}{cLD^2}$$

c scaling factor
 cLD² obtain by calibration
 with reference beads

Why particles move through the pore

- Brownian motion
- electroosmosis
- electrophoresis
- external pressure

Concentration determination

external pressure dominates flow:

TRPS: size and concentration example

TRPS: size and concentration example

TRPS: size and concentration example

Common goal: EV detection with single particle methods

if 1 / 1,000 EV is rare you need to count 1,000,000 EV (3% error)

instrument requirements

- differentiate EV
- count ≥10⁶ EV
- reproducible

ζ-potential (surface charge) determination

no external pressure, electrophoresis dominates

ζ-potential (surface charge) determination

no external pressure, electrophoresis dominates flow:

Example ζ-potential determination

Determination of optical properties

optical setup scattering fluorescence Raman

TRPS and fluorescence

1 μm beads passing through the pore

Pore clogging

$$\frac{\Delta I}{I} = \frac{d^3}{cLD^2}$$

Size exclusion chromatography

Size exclusion chromatography

size exclusion threshold

High throughput analysis?

Method	Time to acquire signal of 1 EV (µs)	Time to detect 10 ⁶ EV in practice (min)
Tunable resistive pulse sensing	1,000	10,000
Nanoparticle tracking analysis	1,000,000	10,000
Flow cytometry	1	10

Summary TRPS analysis of EV

- size distribution
- concentration
- ζ-potential
- pore clogging
 - size exclusion chromatography
- limited throughput
 - parallel solid pores

Acknowledgements

Academic Medical Center
Biomedical Engineering &
Physics
Laboratory Experimental
Clinical Chemistry
Hans van der Voorn
(Izon Science)

Info: edwinvanderpol.com

YouTube: METVES

Active 1 year ago • 4 videos

CHANNEL Subscribed 8

Collection and preparation of human blood for vesicle measurements

METVES

1 year ago • 304 views

Standard operation procedure to collect and prepare exosomes and other extracellular vesicles from human blood. Please cite as ...

Vesicle size and concentration by Nanoparticle Tracking Analysis

METVES

1 year ago · 439 views

Standard operation procedure to determine the size distribution and concentration of exosomes and other extracellular vesicles ...

Testing the metvest

John Parry

5 years ago * 940 views

Cosmo carrying out a scientific test of how much protection the filler of a issue metvest offers using a corkscrew. Note that the vest ...

Isolation of vesicles from human blood by Sepharose size exclusion chromatography

METVE

1 year ago • 993 views

Standard operation procedure to isolate exosomes and other extracellular vesicles from human blood by Sepharose (CL-2B) size ...