Measuring extracellular vesicle concentrations: standardize the unknown

Edwin van der Pol

Vesicle Observation Center

July 8th, 2017

Vesicle Observation Center, Academic Medical Center, University of Amsterdam, The Netherlands

WHENEVER SOMEONE UPLOADS A LETTERBOXED 16:9 VIDEO RESCALED TO 4:3, I DO THIS TO THEIR CAR.

Extracellular vesicles

Why measure vesicle concentrations?

 Blood plasma contains heterogeneous vesicle populations with clinical information*

Hematology parameter	Concentration (vesicles mL^{-1})
Platelet vesicle count	$2.3 - 6.2 \cdot 10^9$
Erythrocyte vesicle count	$7.0 - 8.6 \cdot 10^{10}$
Reticulocyte vesicle count	$3.9 - 15.6 \cdot 10^8$
Leukocyte vesicle count	$6.2 - 16.4 \cdot 10^7$
Total vesicle count	$7.3 - 9.4 \cdot 10^{10}$

Problem definition

- Number concentration (vesicles / mL):
 number of vesicles per sample volume
- Practical requirements:
 detect and characterize <u>all vesicles</u>
 in a <u>known sample volume</u>
 at a clinically <u>relevant rate</u>

Outline measuring vesicle concentrations

- Speed versus size
- Sample volume determination
- Detection limits

Standardize the unknown

Outline measuring vesicle concentrations

- Speed versus size
- Sample volume determination
- Detection limits

Standardize the unknown

Sample volume determination

```
concentration [\mu L^{-1}] = particles / sample volume [\mu L] sample volume [\mu L] = flow rate [\mu L/min] \cdot time [min]
```

- Flow rate
 - Specified
 - Calibrated
- Fixed volume

Calibrated versus specified flow rate

Most flow cytometers:

Differential pressure

Calibrated versus specified flow rate

Apogee A60-Micro:

Actuated syringe pump

Calibrated flow rate versus syringe pump

- Disadvantage syringe pump
 - Particles stick to tubing (>0.4%)
- Disadvantage calibration particles
 - > Trucount beads
 - Error unknown
 - Too big (>3 μm) thus too bright
 - No sub-μm concentration reference particles

Sample volume determination

```
concentration [\mu L^{-1}] = particles / sample volume [\mu L] sample volume [\mu L] = flow rate [\mu L/min] \cdot time [min]
```

- Flow rate
 - ✓ Specified
 - ✓ Calibrated
- Fixed volume: nanoparticle tracking analysis (NTA), used by 58% of the research field*

Syringe flow rate versus fixed volume

Syringe flow rate versus fixed volume

Outline measuring vesicle concentrations

- Speed versus size
- Sample volume determination
- Detection limits

Standardize the unknown

Detection limits and "the unknown"

Standardize "the unknown"

1. Calibrate flow rate (μL/min)

Data with comparable units

- Run beads of known
 - concentration (mL⁻¹)
 - mean equivalent fluorescence intensity (MESF)
 - scattering intensity (nm²) for the collection angles of the instrument

Detection limits with comparable units

Summary

- Vesicle concentrations are future clinical parameters
- NTA does not measure concentration (error >100%)
- To measure vesicle concentrations, calibrate
 - flow rate (μL/min)
 - fluorescence intensity (MESF)
 - > scatter intensity (nm²)
 - and determine and report detection limits

Acknowledgements

- Academic Medical Center
 - Vesicle Observation Center
 - Biomedical Engineering & Physics
 - Laboratory Experimental Clinical Chemistry
- More information: edwinvanderpol.com

