Detecting cell-derived vesicles with cell counters: from artefact to clinical act

Edwin van der Pol

September 25th, 2017

Vesicle Observation Center, Academic Medical Center, University of Amsterdam, The Netherlands

"cell-free plasma contains a subcellular factor that promotes clotting of blood"

"small vesicles promote clotting of blood"

Image: purdue.edu

Sleeping beauties

Sleeping beauties Cells release extracellular vesicles (EVs) in body fluids

Why extracellular vesicles (EVs) are interesting

- cells release EVs in body fluids to
 - > transport waste
 - > communicate
- EVs are biomarkers for diseases
 - cancer
 - > thrombosis
 - preeclampsia

EV-based liquid biopsy

Hematology parameter	Concentration (vesicles mL^{-1})
Platelet vesicle count	$ \begin{array}{rrr} 2.3 - 6.2 \cdot 10^9 \\ 7.0 - 8.6 \cdot 10^{10} \end{array} $
Erythrocyte vesicle count Reticulocyte vesicle count	$3.9 - 15.6 \cdot 10^{8}$
Leukocyte vesicle count	$6.2 - 16.4 \cdot 10^7$
Total vesicle count	$7.3 - 9.4 \cdot 10^{10}$

Problem: EVs are small and heterogeneous

Outline

- Extracellular vesicles (EVs)
- Single EV detection methods
- Single EV flow cytometry
 - > From artefact...
 - > to clinical act
 - Standardization by size determination
 - Standardization by size and refractive index determination

EV research using flow cytometry

Outline

- Extracellular vesicles (EVs)
- Single EV detection methods
- Single EV flow cytometry
 - > From artefact...
 - > to clinical act
 - Standardization by size determination
 - Standardization by size and refractive index determination

Flow cytometry

How do we know that we are counting EVs?

Set gate with polystyrene beads

optical configuration

- collection angles
- collection efficiency
- obscuration bar
- diaphragm
- mirror

Becton Dickinson FACSCalibur

Apogee A50-micro

Forward scatter

- data polystyrene beads
- data silica beads
- theory polystyrene spheres $(n_{polystyrene} = 1.605)$
- theory silica spheres
 (n_{silica} = 1.445)

Relate scatter to diameter of EVs

- data polystyrene beads
- data silica beads
- theory polystyrene spheres $(n_{polystyrene} = 1.605)$
- theory silica spheres
 (n_{silica} = 1.445)
- ----- theory vesicles $(n_{core} = 1.38 \pm 0.02, n_{shell} = 1.48)$

Particles below detection limit are detected

Swarm detection

Outline

- Extracellular vesicles (EVs)
- Single EV detection methods
- Single EV flow cytometry
 - ✓ From artefact...
 - > to clinical act
 - Standardization by size determination
 - Standardization by size and refractive index determination

Clinical act

- reported concentrations of plasma EV differ >10⁶-fold
- clinical data cannot be compared
- standardization required

Standardization is boring (biologists, clinicians)

Standardization is exciting (metrologists, physicists)

BESSYII synchrotron

0.31 nm X-rays to size EVs (flow cytometers typically use 488 nm light)

Standardization is important (everybody)

Problem 1: instruments differ in sensitivity

Problem 2: arbitrary units

same population of erythrocyte EVs

Apogee A50-micro

Becton Dickinson FACSCanto II

Goal

 obtain reproducible measurements of the EV concentration using different flow cytometers

Study comprises 33 sites (64 instruments) worldwide

Approach scatter-based standardization

- determine flow rate
- scatter (a.u.)

 diameter (nm)
- measure EV reference sample
- apply EV size gate to software (e.g. FlowJo)
- report concentrations

Determine flow rate

Approach scatter-based standardization

- determine flow rate
- scatter (a.u.)

 diameter (nm)
- measure EV reference sample
- apply EV size gate to software (e.g. FlowJo)
- report concentrations

Sensitivity of 46 flow cytometers in the field

= unable to detect 400 nm fluorescent polystyrene beads

Approach scatter-based standardization

- determine flow rate
- ✓ scatter (a.u.) → diameter (nm)
- measure EV reference sample
- apply EV size gate to software (e.g. FlowJo)
- report concentrations

Reproducibility of 1200-3000 nm EV

%CV	All
Gate on beads	74%
Gate on EV size with	59%
light scatter theory	

Conclusions standardization by sizing

- flow rate calibration is essential
- many flow cytometers used in EV research do not detect EV by scatter-based triggering
- EV size gate by Mie theory (CV=59%) leads to better reproducibility than classical bead gate (CV=74%)

Outline

- Extracellular vesicles (EVs)
- Single EV detection methods
- Single EV flow cytometry
 - ✓ From artefact...
 - - ✓ Standardization by size determination
 - Standardization by size and refractive index determination

Goal: from a.u. to size and refractive index

Goal: from a.u. to size and refractive index

Approach size and refractive index determination

- calibrate instrument (Apogee A50-micro)
 - calibrate FSC and SSC
 - derive size from Flow Scatter Ratio (Flow-SR = SSC/FSC)
 - derive refractive index from size and FSC
- validate Flow-SR
 - beads mixture
 - oil emulsion
- apply Flow-SR
 - > EV and lipoprotein particles from blood

Calibrate forward scatter and side scatter

Calibrate forward scatter and side scatter

Derive size from Flow-SR

$$Flow-SR = \frac{side\ scatter}{forward\ scatter}$$

Derive size from Flow-SR

Approach size and refractive index determination

- calibrate instrument (Apogee A50-micro)
 - ✓ calibrate FSC and SSC
 - ✓ derive size from Flow Scatter Ratio (Flow-SR = SSC/FSC)
 - ✓ derive refractive index from size and FSC
- validate Flow-SR
 - beads mixture
 - > oil emulsion
- apply Flow-SR
 - > EV and lipoprotein particles from blood

Validate Flow-SR with a beads mixture

Validate Flow-SR with a beads mixture

measurement error < 8% CV < 8%

CV < 2%

Validate Flow-SR with oil emulsions

Approach size and refractive index determination

- calibrate instrument (Apogee A50-micro)

 - ✓ derive size from Flow Scatter Ratio (Flow-SR = SSC/FSC)
 - ✓ derive refractive index from size and FSC
- validate Flow-SR
 - ✓ beads mixture
- apply Flow-SR
 - EV and lipoprotein particles from blood

Supernatant of outdated platelet concentrate

Supernatant of outdated platelet concentrate

Conclusions Flow-SR

- Flow-SR enables size and refractive index determination of nanoparticles by flow cytometry
 - data interpretation and comparison
 - label-free identification

Summary

- body fluids contain extracellular vesicles (<1 μm)
 - biomarkers for disease
 - > difficult to detect
- flow cytometry is promising for clinical applications of vesicles, but requires improvements:
 - sensitivity at high throughput
 (30 nm vesicles at 10⁴ s⁻¹)
 - standardization
 - vesicle identification

Acknowledgements

- Academic Medical Center
 - Biomedical Engineering & Physics
 - Ton van Leeuwen
 - Frank Coumans
 - Laboratory Experimental Clinical Chemistry
 - Rienk Nieuwland

- More information
 - edwinvanderpol.com
 - exometry.com
 - metves.eu
 - isev.org

