Extracellular vesicles as biomarkers: flow flaws, facts and clinical acts

Edwin van der Pol

May 28th, 2019

OLA&TED

WORK TOO HARD ON THEIR PHD THESIS

Outline

image: semrock.com

Extracellular vesicles

Extracellular vesicles

- Cells release EVs: biological nanoparticles with receptors, DNA, RNA
- Specialized functions
- Clinically relevant

EV-based "liquid biopsy"

Extracellular vesicles are booming!

Science¹

Industry

- Startup companies²
 - 4 large EV startups received \$ 386 million investment capital in 2018
- Established companies
 - Thermo Fisher
 - Becton Dickinson
 - Beckman Coulter
- Market growth factors between 6-48 %

EV research using flow cytometry

Motivation to detect EVs by flow cytometry

- EVs are heterogeneous
 - Flow cytometry can differentiate EV types
- Study all (also rare) EVs
 - ➤ Flow cytometry is fast (>10,000 events s⁻¹)

Problem: EV flow cytometry is difficult

"Gąsecka's law"

- Reported concentrations of plasma EVs differ >10⁶-fold
- Clinical data cannot be compared

Detection of EVs: size does matter

Summary extracellular vesicles (EVs)

- Body fluids contain EVs with clinical information
- Flow cytometers can identify EV populations
- Size distribution and detection limit determine measured concentration: apply statistics carefully!

Outline

image: semrock.com

Outline light scattering

- Flow cytometry detection of EVs with
 - > one scatter detector
 - > two scatter detectors
- Standardization

Goal: use scatter to interpret EV flow cytometry data

Is a "bead size gate" a good idea?

Relate scatter to diameter of beads

data polystyrene beads

Relate scatter to diameter of beads

data polystyrene beads

Relate scatter to diameter of beads

- data polystyrene beads
- data silica beads
- theory polystyrene spheres $(n_{polystyrene} = 1.605)$
- theory silica spheres(n_{silica} = 1.445)

Relate scatter to diameter of EVs

Particles below detection limit are detected

Flow cytometry

image: semrock.com

•			•		•		
	•					•	
		•		•	•		
•			•	•			
	•	•			•		•
•			•	•		•	
•		•					
				•		·	
	•	•	•		•	•	
			•	•	•		•
•	•				•		

Summary EV detection with 1 scatter detector

- Single event signal attributed to scattering from multiple EVs ("Swarm detection")
- Conventional flow cytometry detects <1% of all EVs

Outline light scatter

- Flow cytometry detection of EVs with
 - > one scatter detector
 - > two scatter detectors
- Standardization

Goal

 Obtain physical properties of particles from flow cytometry scatter signals

Approach

- Calibrate instrument (Apogee A50-micro)
 - calibrate FSC and SSC
 - derive size from Flow Scatter Ratio (Flow-SR = SSC/FSC)
 - derive refractive index from size and FSC
- Validate Flow-SR
 - beads mixture
 - > oil emulsion
- Apply Flow-SR
 - > EV and lipoprotein particles from blood

Calibrate forward scatter and side scatter

Flow-SR =
$$\frac{\text{side scatter}}{\text{forward scatter}}$$

Derive size from Flow-SR

Flow-SR =
$$\frac{\text{side scatter}}{\text{forward scatter}}$$

Derive refractive index from size and FSC

Approach

- calibrate instrument (Apogee A50-micro)

 - ✓ derive size from Flow Scatter Ratio (Flow-SR = SSC/FSC)
 - ✓ derive refractive index from size and FSC
- validate Flow-SR
 - beads mixture
 - > oil emulsion
- apply Flow-SR
 - > EV and lipoprotein particles from blood

Validate Flow-SR with a beads mixture

Validate Flow-SR with a beads mixture

measurement error < 8% CV < 8%

CV < 2%

Validate Flow-SR with oil emulsions

Approach

- calibrate instrument (Apogee A50-micro)

 - ✓ derive size from Flow Scatter Ratio (Flow-SR = SSC/FSC)
 - ✓ derive refractive index from size and FSC
- ✓ validate Flow-SR
 - ✓ beads mixture
- apply Flow-SR
 - > EV and lipoprotein particles from blood

Supernatant of outdated platelet concentrate

Supernatant of outdated platelet concentrate

Median refractive index platelet EVs >200 nm = 1.37

Summary EV detection with 2 scatter detectors

- Flow-SR enables size and refractive index determination of nanoparticles by flow cytometry
 - data interpretation and comparison
 - differentiate EVs and lipoprotein particles

Outline light scatter

- Flow cytometry detection of EVs with
 - > one scatter detector
 - > two scatter detectors
- Standardization

Standardization is boring

Standardization is important

Goal

 obtain reproducible measurements of the EV concentration using different flow cytometers

Study comprises 33 sites (64 instruments) worldwide

Approach scatter-based standardization

- Measure EV reference sample and controls
- Scatter (a.u.) → diameter (nm)
 - Measure Rosetta calibration* beads
 - Rosetta calibration* software relates scatter to diameter and defines EV size gates
- Apply EV size gate to software (e.g. FlowJo) and report concentrations

EV reference sample

- Platelet (CD61-PE+) EVs from cell-free platelet concentrates
- Trigger on most sensitive scatter channel
- Include EVs with CD61-PE+ fluorescence

Exclusion of flow cytometers (FCM)

Sensitivity of 46 flow cytometers in the field

400 nm polystyrene beads scatter more than 1,000 nm EV

Sensitivity of 46 flow cytometers in the field

Results

Method	CV* concentration (%)
No scatter gate	144
Traditional bead size gate	139
1,200-3,000 nm EV size gate	81
600-1,200 nm EV size gate	82
300-600 nm EV size gate	115

^{*}CV: coefficient of variation (standard deviation / mean)

Conclusions standardization by sizing

- 24% of flow cytometers in study are unable to detect EVs by scatter-based triggering
- EV diameter gates by Mie theory improve reproducibility compared to no gate or bead diameter gate

Outline

image: semrock.com

Fluorescence

- Yesterday you have learned about fluorescent antibody labeling, so ask Alfonso!
- Label EVs
 - Antibodies
 - Use controls: evflowcytometry.org
 - Spin down aggregates!
 - ➤ Membrane dyes?

How specific do generic dyes label EVs?

 blood contains ~1,000 lipoprotein particles (LPs) for each EV*

Method: Flow-SR

Outline

image: semrock.com

Study comprises 33 sites (64 instruments) worldwide

Determine flow rate

$$concentration = \frac{\text{\# of EV}}{\text{flow rate} \times \text{measurement time}}$$

Conclusions

- Detection of extracellular vesicles by flow cytometry: first the flaws & facts, then the clinical acts
- Calibrate each flow cytometry aspect
 - Scatter
 - Fluorescence
 - > Flow rate

Acknowledgements

- Vesicle Observation Center
 Amsterdam University Medical
 Centers
 - Ton van Leeuwen
 - Rienk Nieuwland
 - Frank Coumans
 - Leonie de Rond
- Software and beads: exometry.com
- Reporting framework: evflowcytometry.org
- More info: edwinvanderpol.com

